Dominic Lucas, Jan Kožák, Annika Rautenberg, Claire Chrétien, Yann Pellequer, Alf Lamprecht
Abstract
Poorly water-soluble drugs are still a major challenge to overcome in order to achieve sufficiently high oral bioavailability. Spray freeze drying (SFD) is proposed here as an alternative for the preparation of amorphous, free-flowing porous celecoxib spheres for enhanced drug dissolution. Tertiary butyl alcohol solutions of celecoxib + excipient (povidone, hydroxypropyl methylcellulose acetate succinate (HPMC-AS) and Soluplus®) at variable ratios were sprayed into a cooled spray tower, followed by vacuum freeze drying. Final porous particles were free-flowing, highly spherical (circularity ≥ 0.96) and mean diameters ranging from 210 to 800 µm, depending on excipient and drug content. XRPD measurements showed that Celecoxib was amorphous in all formulations and remained stable during 6 months storage. Kollidon 25 and HPMC-AS combinations resulted in the highest dissolution rates as well as dissolved drug amounts (30.4 ± 1.5 µg/ml and 41.8 ± 1.7 µg/ml) which in turn was 2-fold and 1.3-fold increase compared to film casted amorphous reference formulations, respectively. This phenomenon also translated into a faster onset of the drug absorption in-vivo, with significantly lower tmax values, while AUC values were non-significantly lowered compared to amorphous references. The high porosity of SFDs led to the advantageous accelerated dissolution which also translated into faster onset of absorption in-vivo.
Keywords
Spray freeze drying, Amorphous solid dispersions, Lyospheres, Porous particles, Poorly water-soluble