Hydroxypropylcellulose as matrix carrier for novel cage-like microparticles prepared by spray-freeze-drying technology

Hydroxypropylcellulose as matrix carrier for novel cage-like microparticles prepared by spray-freeze-drying technology

Shaofeng Weia, Yueqin Mab, Jing Luoa, Xiaoru Hea, Pengfei Yuea, Zhiyu Guana, Ming Yanga

Abstract

The objective of this study is to design novel dissolution-enhanced microparticles loaded poorly soluble drug nanocrystals used a low viscosity of hydroxypropylcellulose (HPC) as matrix carrier. An interesting approach combined homogenization and the spray-freeze-drying technique was developed. The results demonstrated that the ratio of HPC to drug played an important role in size-reduction efficiency of drug during homogenization. And the formation of cage-like structure of the composite particles depended on ratio of HPC to drug. The spray-freeze-dried composite particles with HPC ratio of 1:2, 1:1 and 2:1 possessed excellent redispersibility, which attributed to its porous matrix and large surface area (3000 m2/g). The dissolution of spray-freeze-dried composite particles with higher ratios of HPC (1:2 and 1:1) was significantly enhanced, which attributed to the particle size reduction of drug. The HPC could immobilize drug nanocrystals in its cage-like structure and prevent it from the subsequent agglomeration during storage. In conclusion, the prepared cage-like microparticles is a promising basis for further formulation development.

Keywords

Hydroxypropylcellulose; Nanocrystals; Cage-like microparticles; Spray-freeze-drying; Redispersibility